☑️ ENVÍO GRATIS a toda Colombia por compras superiores a $ 79.000 (*)
Libros ImpresosTecnología, ingeniería, agricultura, procesos industrialesIngeniería electrónica y de las comunicacionesA polynomial approach for analysis and optimal control of switched nonlinear systems

SINOPSIS DEL LIBRO:

En esta disertación se investiga cómo la geometría semialgebráica convexa y la optimización polinomial global pueden ser usadas para analizar y diseñar sistemas conmutados no lineales. En cuanto al análisis de la estabilidad de los sistemas conmutados se muestra que la representación del problema conmutado original en un sistema polinómico continuo permite el uso de la desigualdad de disipación para sistemas polinómicos. Además del análisis de estabilidad, también se investigan problemas de control óptimo en sistemas conmutados no lineales. Se propone entonces una aproximación alternativa a fin de solucionar efectivamente el problema del control óptimo para un sistema conmutado no lineal autónomo basado en el principio del máximo generalizado. Finalmente, se presenta una aplicación industrial para obtener una aproximación lineal a trazos del crecimiento celular no lineal, usando funciones lineales a trazos canónicos. Dicha aproximación es probada a través de una estrategia de control probing para la velocidad de alimentación.

Características:

Atributos LU
Año de Edición
20102010
Descatalogado
NO
Tipo
Libro
Autor
Eduardo Mojica-NavaEduardo Mojica-Nava
ISXN
97895869549459789586954945
Idioma
EspañolEspañol
Núm. Páginas
145145
Peso (Físico)
290290
Tamaño (Físico)
17 x 2417 x 24
Título
A polynomial approach for analysis and optimal control of switched nonlinear systemsA polynomial approach for analysis and optimal control of switched nonlinear systems
Biografía del Autor
Tabla de Contenido
Acknowledgements

Résumé

Summary

List of Figures

1. Introduction
1.1. Introductory remarks and motivation  
1.2. Contributions, literature review, and outline  
1.2.1. For stability analysis  
1.2.2. For the optimal control problem  
1.2.3. For the piecewise linear model and control of a bioreactor  

2. A Polynomial approach for stability analysis of switched systems

2.1. Definitions and preliminaries  
2.1.1. Basic concepts  
2.1.2. Stability analysis under arbitrary switching and dissipativity  
2.2. An Equivalent polynomial representation
2.3. Results in stability analysis for polynomial constrained dynamical systems  
2.3.1. The sum of squares decomposition  
2.3.2. Numerical example of a polynomial switched system  
2.4. A generalization for nonlinear switched systems
2.4.1. The recasting process for stability analysis  
2.4.2. Example of a non-polynomial switched system

3. On optimal control of switched systems using a polynomial approach

3.1. Definitions and preliminaries  
3.1.1. Switched systems and its optimal control problem  
3.1.2. Maximum principle and necessary conditions
3.1.3. Relaxation and young measures
3.2. An equivalent polynomial optimal control problem
3.2.1. Equivalent representations  
3.2.2. Equivalent optimal control problem  
3.3. Relaxation of the equivalent optimal polynomial problem  
3.3.1. SDP relaxation of the optimal control problem
3.3.2. Switched optimization algorithm
3.3.3. Numerical example: the art stein circle  
3.4. Extension results to more general nonlinear optimal control problems  
3.4.1. The recasting process  
3.4.2. SDP relaxation  
3.4.3. Numerical example: swinging up a pendulum

4. Piecewise-linear approach to nonlinear cellular growth control
4.1. Process description  
4.1.1. Nonlinear model
4.2. The biological CPWL model  
4.2.1. Orthonormal canonical piecewise linear functions
4.2.2. Analysis of CPWL approximation: error estimation
4.2.3. Cellular growth CPWL model  
4.3. Simulation Results  
4.3.1. Model simulation results: nonlinear vs CPWL
4.3.2. Transient analysis of cells concentration
4.4. Probing feed controller  
4.4.1. Feedback algorithm  

5. Conclusions and future work
5.1. Summary of contributions  
5.2. Future research directions  

A. Mathematical background
A.1. Brief introduction to measure theory and integration  
A.1.1. Systems of sets
A.1.2. Measures
A.1.3. Integration  
A.2. Some results on probability theory
A.2.1. Some facts about young measures
A.2.2. the problern of moments
A.3. Basics of convex optirnization
A.3.1. Convex sets
A.3.2. Convex functions
A.3.3. Convex optimization
A.4. Optimization over polynomials using the method of moments  
A.4.1. Convergent semi-definite relaxations

References
Acknowledgements

Résumé

Summary

List of Figures

1. Introduction
1.1. Introductory remarks and motivation  
1.2. Contributions, literature review, and outline  
1.2.1. For stability analysis  
1.2.2. For the optimal control problem  
1.2.3. For the piecewise linear model and control of a bioreactor  

2. A Polynomial approach for stability analysis of switched systems

2.1. Definitions and preliminaries  
2.1.1. Basic concepts  
2.1.2. Stability analysis under arbitrary switching and dissipativity  
2.2. An Equivalent polynomial representation
2.3. Results in stability analysis for polynomial constrained dynamical systems  
2.3.1. The sum of squares decomposition  
2.3.2. Numerical example of a polynomial switched system  
2.4. A generalization for nonlinear switched systems
2.4.1. The recasting process for stability analysis  
2.4.2. Example of a non-polynomial switched system

3. On optimal control of switched systems using a polynomial approach

3.1. Definitions and preliminaries  
3.1.1. Switched systems and its optimal control problem  
3.1.2. Maximum principle and necessary conditions
3.1.3. Relaxation and young measures
3.2. An equivalent polynomial optimal control problem
3.2.1. Equivalent representations  
3.2.2. Equivalent optimal control problem  
3.3. Relaxation of the equivalent optimal polynomial problem  
3.3.1. SDP relaxation of the optimal control problem
3.3.2. Switched optimization algorithm
3.3.3. Numerical example: the art stein circle  
3.4. Extension results to more general nonlinear optimal control problems  
3.4.1. The recasting process  
3.4.2. SDP relaxation  
3.4.3. Numerical example: swinging up a pendulum

4. Piecewise-linear approach to nonlinear cellular growth control
4.1. Process description  
4.1.1. Nonlinear model
4.2. The biological CPWL model  
4.2.1. Orthonormal canonical piecewise linear functions
4.2.2. Analysis of CPWL approximation: error estimation
4.2.3. Cellular growth CPWL model  
4.3. Simulation Results  
4.3.1. Model simulation results: nonlinear vs CPWL
4.3.2. Transient analysis of cells concentration
4.4. Probing feed controller  
4.4.1. Feedback algorithm  

5. Conclusions and future work
5.1. Summary of contributions  
5.2. Future research directions  

A. Mathematical background
A.1. Brief introduction to measure theory and integration  
A.1.1. Systems of sets
A.1.2. Measures
A.1.3. Integration  
A.2. Some results on probability theory
A.2.1. Some facts about young measures
A.2.2. the problern of moments
A.3. Basics of convex optirnization
A.3.1. Convex sets
A.3.2. Convex functions
A.3.3. Convex optimization
A.4. Optimization over polynomials using the method of moments  
A.4.1. Convergent semi-definite relaxations

References
Libros Impresos 3x2
Botón empaque navideño
MODO CAZADOR: Universidades y técnicas 20% dcto - JULIO
Todos los libros impresos-1-2022
Flash Sale 20off - 23marzo - 1
Flash Sale 20off - 23marzo-3
Flash Sale 20off - 23marzo-2
ALL-IMPRESOS-HASTA2023
ISBN: 9789586954945
Referencia: 48324

Compra el libro

Libro Impreso
Cargando comentarios…
$ 62.000 COP